Планиметрия, часть с

Содержание:

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

$x = 0; ax + b = 0$

2. Решаем получившиеся уравнения каждое отдельно.

Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$

$4х^2 — 5х = 0$

Вынесем х как общий множитель за скобки:

$х (4х — 5) = 0$

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0   х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

$ax^2 + c = 0$

$ax^2 = — c$

$x_2 = {-c}/{a}$

При решении последнего уравнения возможны два случая:

если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$

если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.

$x^2 — 16 = 0$

$x^2 = 16$

$x = ±4$

Ответ: $х_1 = 4, х_2 = — 4$

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения D называется выражение

$b^2 — 4ac$.

При решении уравнения с помощью дискриминанта возможны три случая:

1. $D > 0$. Тогда корни уравнения равны:

$x_{1,2}={-b±√D}/{2a}$

2. $D = 0$. В данном случае решение даёт два двукратных корня:

$x_{1}=x_{2}={-b}/{2a}$

3. $D < 0$. В этом случае уравнение не имеет корней.

$3х^2 — 11 = -8х$

Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней

$3х^2 + 8х — 11 = 0$

$a = 3 ,b = 8, c = — 11$

$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$

$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$

$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$

Ответ: $x_1=1, x_2=-3{2}/{3}$

Устные способы

Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$

$4х^2+ 3х — 7 = 0$

$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$

Ответ: $х_1= 1, х_2 = -{7}/{4}$

Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$

$5х^2+ 7х + 2 = 0$

$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$

Ответ: $х_1= -1, х_2 = -{2}/{5}$

Кубические уравнения

Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.

$(x — 3)^3 = 27$

Представим обе части как основания в третьей степени

$(x — 3)^3 = $33

Извлечем кубический корень из обеих частей

$х — 3 = 3$

Соберем известные слагаемые в правой части

$x = 6$

Ответ: $х = 6$

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

$4x + 1 — {3}/{x} = 0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x + 1 — {3}/{x}= 0¦· x$

$4x · x + 1 · x — {3·x}/{x} = 0$

3. решаем полученное уравнение

$4x^2 + x — 3 = 0$

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = {3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = {3}/{4}$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$

Механика

Кинематика

Равноускоренное движение:    
Ускорение: `a=(v-v_0)/t`  
Скорость: `v=v_0+at`  
Путь, пройденный телом: `S=v_0t+(at^2)/2` Три варианта формулы
  `S=(v^2-v_0^2)/(2a)`  
  `S=(v+v_0)/2t`  
`v(t)=S'(t)`    
`a(t)=v'(t)=S»(t)`    
Тело брошено под углом к горизонту:    
Горизонтальная проекция скорости: `v_x=v_0*cosalpha=const` Горизонтальная скорость постоянна
Вертикальная проекция скорости: `v_y=v_0*sinalpha` Вертикальная скорость меняется с ускорением `g`
Движение по окружности:  
Центростремительное ускорение: `a_(цс)=v^2/R=omega^2R`
Угловая скорость: `omega=(Deltavarphi)/(Deltat)=(2pi)/T=2pinu`
Связь линейной и угловой скоростей: `v=omegaR`

Динамика

Плотность: `rho=m/V`  
Второй закон Ньютона: `vec F=mvec a` где `vec F` — равнодействующая всех приложенных сил
Гравитационное притяжение: `F=G(m_1m_2)/R^2`  
1-я космическая скорость: `v_I=sqrt(gR)=sqrt((GM)/R)`  
2-я космическая скорость: `v_(II)=sqrt(2)*v_I`  
Закон Гука: `F=-kx`  
Сила трения: `F_(тр)=muN`  
Давление: `p=F/S`  

Статика

Момент силы: `M=F*l`  
Условие равновесия: `{(M_1+M_2+…=0),(vec F_1+vec F_2+…=0):}` Моменты «по часовой стрелке» берём со знаком плюс, моменты «против часовой» берём с минусом
Правило рычага: `F_1*l_1=F_2*l_2` это частный случай условия равновесия
Давление жидкости: `p=rhogh`  
Сила Архимеда: `F_A=rho_жgV_т`  

Импульс и энергия

Импульс: `vec p=mvec v`
Изменение импульса: `Deltavec p=vec FDeltat`
Работа силы: `A=F*l*cosalpha`
Мощность: `P=A/t`
КПД: `eta=A_(полезная)/A_(затраченная)`
Кинетическая энергия: `E_к=(mv^2)/2`
Потенциальная энергия тяжести: `E_п=mgh`
Потенциальная энергия пружины: `E_п=(kx^2)/2`

Механические колебания и волны

`x(t)=Asin(omegat+varphi_0)`  
`v(t)=x'(t)=Aomegacos(omegat+varphi_0)`  
`a(t)=v'(t)=-Aomega^2sin(omegat+varphi_0)`  
Период колебаний: `T=1/nu=(2pi)/omega`
Период математического маятника: `T=2pisqrt(l/g)`
Период пружинного маятника: `T=2pisqrt(m/k)`
Скорость волны: `v=lambdanu`

Молекулярная физика и термодинамика

Молекулярная физика

Средняя кинетическая энергия молекул `bar E_к=3/2kT` Здесь и далее рассматриваем только идеальный одноатомный газ
Давление газа: `p=nkT`  
Уравнение Менделеева-Клайперона: `pV=nuRT`  
Количество вещества в молях: `nu=m/M=N/N_A` M — молярная масса, берём её из таблицы Менделеева, не забываем переводить в кг/моль
Внутренняя энергия: `U=3/2nuRT`  
Закон Дальтона для смеси: `p=p_1+p_2+…`  
Относительная влажность: `varphi=p_(парц)/p_(насыщ)=rho_(парц)/rho_(насыщ)` См. также таблицу давления и плотности насыщенного водяного пара
Уравнение теплобаланса: `Q_1+Q_2+Q_3+…=0` `Q>0` в процессах, где теплота выделяется, и `Q

Термодинамика

`Q=cmDeltaT` где `с` — удельная теплоёмкость
`Q=lambdam` где `lambda` — удельная теплота плавления
`Q=rm` где `r` — удельная теплота парообразования
`Q=qm` где `q` — удельная теплота сгорания
Первое начало термодинамики: `Q=DeltaU+A`  
Работа газа в любом термодинамическом процессе — это площадь под pV-графиком `A=int_1^2pdV`(формулу запоминать не обязательно)
Работа в изобарном процессе: `A=p*DeltaV`  
Работа газа всегда связана с изменением объёма: `Vuarr rArr A>0«Vdarr rArr A`V=const rArr A=0`  
Работа внешних сил над газом: `A_(внеш.сил)=-A_(газа)`  
КПД: `eta=A_(цикл)/Q_н=(Q_н-Q_х)/Q_н`  
Машина Карно: `eta=(T_н-T_х)/T_н`  

Формула Бернулли

При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

  • Бросаем игральный кубик, где вероятности выпадения определенной цифры одинаковы в каждом броске.
  • Включаем лампы с заранее заданной одинаковой вероятностью выхода из строя каждой.
  • Лучник повторяет выстрелы по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой.

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.

  1. Обозначим вероятность появления события А в единичном испытании буквой р, значит:p = P(A), а вероятность противоположного события (событие А не наступило) — буквой qq = P(¯A) = 1 — p.
  2. Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражается формулой Бернулли:Pn(k) = Cnk * pk * qn-k, где q = 1 — p.

Биномиальное распределение — распределение числа успехов (появлений события).

Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.

Как рассуждаем:

Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:

Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец

Распределение заданий по разделам курса физики

Разработчики контрольно-измерительных материалов ориентируются на школьную программу и включают в них задания из всех пройденных разделов физики. Количество упражнений чаще всего зависит от объема материала, количества изученных тем и времени, затраченного на их освоение. Таблица ниже демонстрирует, как представлены разные разделы дисциплины в КИМ.

Раздел физики Число заданий
Вся работа Первая часть Вторая часть
Механика 9–11 7–9 2
Молекулярная физика 7–8 5–6 2
Электродинамика 9–11 6–8 3
Квантовая физика и элементы астрофизики 5–6 4–5 1
Всего 32 24 8

Если говорить о том, что требуется от учащихся для выполнения тех или иных заданий, то здесь ситуация выглядит так:

  • на проверку знания и понимания основных физических законов, величин, постулатов, понятий и принципов направлено 11 упражнений из первой части;
  • еще 11 заданий из первой части предполагают умение участников ЕГЭ описывать и объяснять свойства тел, физические явления и результаты экспериментов, а также приводить конкретные примеры использования знаний по физике на практике;
  • 2 упражнения первой части посвящены способности отличать научную гипотезу от теории, а также умению делать правильные выводы из проведенного эксперимента;
  • все 8 заданий второй части КИМ направлены на умение решать физические задачи;
  • в некоторых вариантах также может быть задание на способность применить полученные умения и знания в жизни.

В экзаменационную работу включают вопросы с разным уровнем сложности. 21 задание базового уровня трудности – на проверку владения основными понятиями и законами. 7 усложненных упражнений, помимо основных теоретических понятий, требуют умения решать задачи с использованием 1-2 основных понятий по физике из конкретной темы. Для выполнения 4 наиболее трудных заданий участнику необходимо знать все формулы по физике для ЕГЭ, поскольку эти задачи находятся на стыке двух, а то и трех разделов дисциплины.

Основные математические формулы

Образование — то, что остается после того, как забыто все, чему учили в школе.

Игорь  Хмелинский, новосибирский учёный, ныне работающий в Португалии, доказывает, что без прямого запоминания текстов и формул развитие абстрактной памяти у детей затруднительно. Приведу выдержки из его статьи  «Уроки образовательных реформ в Европе и странах бывшего СССР»

Незнание таблицы умножения имеет и более серьезные последствия, чем неспособность обнаружить ошибки в расчетах на калькуляторе.

Наша долговременная память работает по принципу ассоциативной базы данных, то есть, одни элементы информации при запоминании оказываются связанными с другими на основе ассоциаций, установленных в момент знакомства с ними.

Далее, вновь поступающая информация попадет из кратковременной памяти в долговременную, если в течение короткого промежутка времени (несколько дней) мы столкнемся с нею многократно, и, желательно, в разных обстоятельствах (что способствует созданию полезных ассоциаций).

Однако при отсутствии в постоянной памяти знаний из арифметики, вновь поступающие элементы информации связываются с элементами, которые к арифметике никакого отношения не имеют – например, личностью преподавателя, погодой на улице и т.п.

Очевидно, такое запоминание никакой реальной пользы учащемуся не принесет – поскольку ассоциации уводят из данной предметной области, то никаких знаний, относящихся к арифметике, учащийся вспомнить не сможет, кроме смутных идей о том, что он вроде бы что-то когда-то об этом должен был слышать. Для таких учащихся роль недостающих ассоциаций обычно выполняют разного рода подсказки – списать у коллеги, воспользоваться наводящими вопросами в самой контрольной, формулами из списка формул, которым пользоваться разрешено, и т.п. В реальной жизни, без подсказок, такой человек оказывается совершенно беспомощным и неспособным применить имеющиеся у него в голове знания.

           Формирование математического аппарата, при котором формулы не заучиваются, происходит медленнее, нежели в противном случае. Почему? Во-первых, новые свойства, теоремы, взаимосвязи между математическими объектами почти всегда используют какие-то особенности ранее изученных формул и понятий.

Концентрировать внимание ученика на новом материале будет сложнее, если эти особенности не смогут извлекаться из памяти за короткий промежуток времени. Во-вторых, незнание формул наизусть препятствует поиску решения содержательных задач с большим количеством мелких операций, в которых требуется не только провести определенные преобразования, но и выявить последовательность этих ходов, анализируя применение нескольких формул на два-три шага вперед

Во-вторых, незнание формул наизусть препятствует поиску решения содержательных задач с большим количеством мелких операций, в которых требуется не только провести определенные преобразования, но и выявить последовательность этих ходов, анализируя применение нескольких формул на два-три шага вперед.

Практика показывает, что интеллектуальное и математическое развитие ребенка, формирование его базы знаний и навыков, происходит значительно быстрее, если большая часть используемой информации (свойства и формулы) находиться в голове. И чем прочнее и дольше она там удерживается, тем лучше.

НАДО ЛИ ВАС ДАЛЬШЕ УБЕЖДАТЬ В ТОМ, ЧТО ФОРМУЛЫ НАДО ЗНАТЬ НАИЗУСТЬ? 

Применение формул сокращенного умножения

1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.

$(a+b)^2=a^2+2ab+b^2$

2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.

$(a-b)^2=a^2-2ab+b^2$

3. Разность квадратов раскладывается на произведение разности чисел и их сумму.

$a^2-b^2=(a+b)(a-b)$

4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.

$(a+b)^3=a^3+3a^2b+3ab^2+b^3$

5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.

$(a-b)^3=a^3-3a^2b+3ab^2-b^3$

6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.

$a^3+b^3=(a+b)(a^2-ab+b^2)$

7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.

$a^3-b^3=(a-b)(a^2+ab+b^2)$

Формулы для ОГЭ-2021 по математике

Формулы сокращённого умножения

`(a + b)^2=a^2 + 2ab + b^2`  
`(a − b)^2=a^2 − 2ab + b^2`  
`a^2 − b^2=(a + b)(a − b)`  
   
`a^3 + b^3=(a + b)(a^2 − ab + b^2)`  
`a^3 − b^3=(a − b)(a^2 + ab + b^2)`  
   
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3` Эти две формулы заучивать не обязательно, но желательно
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3`

Прогрессии

Геометрическая прогрессия:

`b_n=b_(n-1)*q`
`b_n=b_1*q^(n-1)`
`S_n=((q^n-1)*b_1)/(q-1)`
Бесконечно убывающая: `S=b_1/(1-q)`

Вероятность

Вероятность события A: `P(A)=m/n` m — число благоприятных событийn — общее число событий
     
События происходят A и B происходят одновременно `A*B`  
Независимые события: `P(A*B)=P(A)*P(B)` Когда вероятность одного события (А) не зависит от другого события (B)
Зависимые события: `P(A*B)=P(A)*P(B|A)` `P(B|A)` — вероятность события B при условии, что событие A наступило
     
Происходит или событие A, или B `A+B`  
Несовместные события: `P(A+B)=P(A)+P(B)` Когда невозможно наступление обоих событий одновременно, т.е. `P(A*B)=0`
Совместные события: `P(A+B)=P(A)+P(B)-P(A*B)` Когда оба события могут наступить одновременно

Свойства степеней

`a^0=1` `a^1=a`
`a^(-1)=1/a` `a^(-n)=1/a^n`
`a^(1/2)=sqrt(a)` `a^(1/n)=root(n)(a)`
`a^m*a^n=a^(m+n)` `a^m/a^n=a^(m-n)`
`(a*b)^n=a^n*b^n` `(a/b)^n=a^n/b^n`
`(a^m)^n=a^(m*n)` `a^(m/n)=root(n)(a^m)`

Геометрия

Планиметрия (2D)

Тригонометрия: `sinA=a/c`   `cosA=b/c`  
  `text(tg)A=sinA/cosA=a/b`  
Теорема косинусов: `c^2=a^2+b^2-2ab*cosC`  
Теорема синусов: `a/sinA=b/sinB=c/sinC=2R` где R — радиус описанной окружности
Уравнение окружности: `(x-x_0)^2+(y-y_0)^2=R^2` где `(x_0;y_0)` — координаты центра окружности
Соотношение вписанного и центрального углов: `beta=alpha/2=(uualpha)/2`  
Описанная окружность, треугольник: `R=(abc)/(4S)` См. также теорему синусов. Центр лежит на пересечении срединных перпендикуляров.
Вписанная окружность, треугольник: `r=S/p` где p — полупериметр многоугольника. Центр лежит на пересечении биссектрис.
Описанная окружность, четырёхугольник: `alpha+gamma=beta+delta=180^circ`  
Вписанная окружность, четырёхугольник: `a+c=b+d`  
Свойство биссектрисы: `a/x=b/y`  
Теорема о пересекающихся хордах: `AM*BM=CM*DM` Эти теоремы необходимо уметь выводить
Теорема об угле между касательной и хордой: `alpha=1/2uuAB`  
Теорема о касательной и секущей: `CM^2=AM*BM`  
Теорема об отрезках касательных: `AB=AC`  

Площади фигур:

Формулы по физике для ЕГЭ

Шпаргалка с формулами по физике для ЕГЭ 

и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

Для начала картинка, которую можно распечатать в компактном виде.

А потом вордовский файл, который содержит все формулы чтобы их распечатать, которые находятся внизу статьи.

Механика

  1. Давление                      Р=F/S
  2. Плотность                   ρ=m/V
  3. Давление на глубине жидкости   P=ρ∙g∙h
  4. Сила тяжести                       Fт=mg
  5. 5. Архимедова сила                 Fa=ρж∙g∙Vт
  6. Уравнение движения  при равноускоренном  движении

X=X+υ∙t+(a∙t2)/2                    S= (υ2-υ2)/2а         S= (υ+υ) ∙t /2

  1. Уравнение скорости  при равноускоренном движении υ=υ+a∙t
  2. Ускорение            a=(υ-υ)/t
  3. Скорость при движении по окружности υ=2πR/Т
  4. Центростремительное ускорение  a=υ2/R
  5. Связь периода с частотой ν=1/T=ω/2π
  6. II закон Ньютона                F=ma
  7. Закон Гука                          Fy=-kx
  8. Закон Всемирного тяготения  F=G∙M∙m/R2
  9. Вес тела, движущегося с ускорением а↑      Р=m(g+a)
  10. Вес тела, движущегося с ускорением а↓      Р=m(g-a)
  11. Сила трения                     Fтр=µN
  12. Импульс тела                       p=mυ
  13. Импульс силы                     Ft=∆p
  14. Момент силы                    M=F∙ℓ
  15. Потенциальная энергия тела, поднятого над землей Eп=mgh
  16. Потенциальная энергия упруго деформированного тела Eп=kx2/2
  17. Кинетическая энергия тела Ek=mυ2/2
  18. Работа            A=F∙S∙cosα
  19. Мощность     N=A/t=F∙υ
  20. Коэффициент полезного действия η=Aп/Аз
  21. Период колебаний математического маятника T=2π√ℓ/g
  22. Период колебаний пружинного маятника T=2 π √m/k
  23. Уравнение гармонических колебаний  Х=Хmax∙cos ωt
  24. Связь длины волны, ее скорости и периода λ= υТ

Молекулярная физика и термодинамика

  1. Количество вещества              ν=N/ Na
  2. Молярная масса                           М=m/ν
  3. Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
  4. Основное уравнение МКТ      P=nkT=1/3nmυ2
  5. Закон Гей – Люссака (изобарный процесс)    V/T =const
  6. Закон Шарля (изохорный процесс)    P/T =const
  7. Относительная влажность φ=P/P∙100%
  8. Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
  9. Работа газа A=P∙ΔV
  10. Закон Бойля – Мариотта (изотермический процесс)    PV=const
  11. Количество теплоты при нагревании  Q=Cm(T2-T1)
  12. Количество теплоты при плавлении   Q=λm
  13. Количество теплоты при парообразовании  Q=Lm
  14. Количество теплоты при сгорании топлива  Q=qm
  15. Уравнение состояния идеального газа PV=m/M∙RT
  16. Первый закон термодинамики   ΔU=A+Q
  17. КПД тепловых двигателей         η= (Q1 — Q2)/ Q1
  18. КПД идеал. двигателей  (цикл Карно)     η= (Т1 — Т2)/ Т1

Метод группировки

Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.

Пример:

Разложить многочлен на множители $2a^3-a^2+4a-2$

Решение:

Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками. $2a^3-a^2+4a-2=(2a^3-a^2)+(4a-2)$

$2a^3-a^2+4a-2=(2a^3-a^2)+(4a-2)$

Далее из каждой группы вынесем общий множитель

$(2a^3-a^2)+(4a-2)=a^2(2a-1)+2(2a-1)$

После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.

$a^2(2a-1)+2(2a-1)=(2a-1)(a^2+2)$

Произведение данных скобок — это конечный результат разложения на множители.

Тригонометрические тождества

  1. $tgα={sinα}/{cosα}$
  2. $ctgα={cosα}/{sinα}$
  3. $sin^2α+cos^2α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$sinα=±√{1-cos^2α}$

$cosα=±√{1-sin^2α}$

  1. $tgα·ctgα=1$
  2. $1+tg^2α={1}/{cos^2α}$
  3. $1+ctg^2α={1}/{sin^2α}$

Вычислить $sin t$, если $cos t = {5}/{13} ; t ∈({3π}/{2};2π)$

Найдем $sin t$ через основное тригонометрическое тождество. И определим знак, так как $t ∈({3π}/{2};2π)$ -это четвертая четверть, то синус в ней имеет знак минус

$sin⁡t=-√{1-cos^2t}=-√{1-{25}/{169}}=-√{{144}/{169}}=-{12}/{13}$

Формулы суммы и разности

$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$

$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$

$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$

$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$

Формулы произведения

$cosα·cosβ={cos(α-β)+cos(α+β)}/{2}$

$sinα·sinβ={cos(α-β)-cos(α+β)}/{2}$

$sinα·cosβ={sin(α+β)+sin(α-β)}/{2}$

Формулы сложения

$cos(α+β)=cosα·cosβ-sinα·sinβ$

$cos(α-β)=cosα·cosβ+sinα·sinβ$

$sin(α+β)=sinα·cosβ+cosα·sinβ$

$sin(α-β)=sinα·cosβ-cosα·sinβ$

Вычислить $sin12cos18+cos12sin18$

Данное выражение является синусом суммы

$sin12cos18+cos12sin18= sin⁡(12+18)=sin30=0.5$

Задача (Вписать в ответ число)

Вычислить $sin{5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}$

Решение:

Данное выражение является синусом суммы

$sin {5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}=sin⁡({π}/{12}+{5π}/{12})=sin {6π}/{12}=sin {π}/{2}=1$

Ответ: $1$

Показательные уравнения

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

$a^x=b$

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n·a^m=a^{n+m}$

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

$a^n:a^m=a^{n-m}$

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n∙m}$

4. При возведении в степень произведения в эту степень возводится каждый множитель

$(a·b)^n=a^n·b^n$

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

6. При возведении любого основания в нулевой показатель степени результат равен единице

$a^0=1$

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

$a^{-n}={1}/{a^n}$

${a^{-n}}/{b^{-k}}={b^k}/{a^n}$

8. Радикал (корень) можно представить в виде степени с дробным показателем

$√^n{a^k}=a^{{k}/{n}}$

Виды показательных уравнений:

1. Простые показательные уравнения:

а) Вида $a^{f(x)}=a^{g(x)}$, где $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием ($а >0, a≠1$) равны только тогда, когда равны их показатели.

$f(x)=g(x)$

b) Уравнение вида $a^{f(x)}=b, b>0$

Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается

$log_{a}a^{f(x)}=log_{a}b$

$f(x)=log_{a}b$

2. Метод уравнивания оснований.

3. Метод разложения на множители и замены переменной.

  • Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.
  • Сделать замену переменной $a^{f(x)}=t, t > 0$.
  • Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
  • Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^{f(x)}=t$, решаем его и результат записываем в ответ.

Пример:

Решите уравнение $2^{3x}-7·2^{2x-1}+7·2^{x-1}-1=0$

Решение:

По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.

$(2^x)^3-{7·(2^x)^2}/{2}+{7·2^x}/{2-1}=0$

Сделаем замену переменной $2^x=t; t>0$

Получаем кубическое уравнение вида

$t^3-{7·t^2}/{2}+{7·t}/{2}-1=0$

Умножим все уравнение на $2$, чтобы избавиться от знаменателей

$2t^3-7·t^2+7·t-2=0$

Разложим левую часть уравнения методом группировки

$(2t^3-2)-(7·t^2-7·t)=0$

Вынесем из первой скобки общий множитель $2$, из второй $7t$

$2(t^3-1)-7t(t-1)=0$

Дополнительно в первой скобке видим формулу разность кубов

$2(t-1)(t^2+t+1)-7t(t-1)=0$

Далее скобку $(t-1)$ как общий множитель вынесем вперед

$(t-1)(2t^2+2t+2-7t)=0$

Произведение равно нулю, когда хотя бы один из множителей равен нулю

1) $(t-1)=0;$ 2) $2t^2+2t+2-7t=0$

Решим первое уравнение

$t_1=1$

Решим второе уравнение через дискриминант

$2t^2-5t+2=0$

$D=25-4·2·2=9=3^2$

$t_2={5-3}/{4}={1}/{2}$

$t_3={5+3}/{4}=2$

Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения

$2^x=1; 2^x={1}/{2}; 2^x=2$

$2^x=2^0; 2^x=2^{-1}; 2^x=2^1$

$х_1=0; х_2=-1; х_3=1$

Ответ: $-1; 0; 1$

4. Метод преобразования в квадратное уравнение

  • Имеем уравнение вида $А·a^{2f(x)}+В·a^{f(x)}+С=0$, где $А, В$ и $С$ — коэффициенты.
  • Делаем замену $a^{f(x)}=t, t > 0$.
  • Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
  • Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^{f(x)}=t$, решаем его и результат записываем в ответ.

Способы разложения на множители:

Вынесение общего множителя за скобки.

Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:

  1. Определить общий множитель.
  2. Разделить на него данный многочлен.
  3. Записать произведение общего множителя и полученного частного (заключив это частное в скобки).

Пример:

Разложить на множители многочлен: $10a^{3}b-8a^{2}b^2+2a$.

Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:

$10a^{3}b-8a^{2}b^2+2а=2a({10a^{3}b}/{2a}-{8a^{2}b^2}/{2a}+{2a}/{2a})=2a(5a^{2}b-4ab^2+1)$

Это и есть конечный результат разложения на множители.

Лучшие шпаргалки по математике. Качественно. Ничего лишнего

Просто кликните по картинке. Подробно — в разделе «Решение задач ЕГЭ по математике».

Тригонометрический круг

Синус, косинус, тангенс…

Формулы тригонометрии

Геометрия. Площади фигур

 Геометрия на ЕГЭ по математике. Треугольники, четырехугольники, окружности

  • Высоты, медианы, биссектрисы
  • Параллелограмм, ромб, квадрат и их свойства
  • Касательная к окружности
  • Центральные и вписанные углы

 Стереометрия: формулы объема и площади поверхности

  1. Вписанные и описанные треугольники
  2. Вписанные и описанные четырехугольники
  3. Стереометрия: Формулы объема и площади поверхности.
  4. Чертежи в задачах по стереометрии

 Классическая стереометрия и метод координат

Основы стереометрии. Часть 1.

Основы стереометрии. Часть 2.

Стереометрия: Векторы и координаты.

Как расположить прямоугольную систему координат

 Алгебра

Таблица производных.

Преобразования графиков функций. Задача С5.

Этот курс заменяет полгода занятий с репетитором. Он включает в себя всю часть «B» и задачу «C1». Просто, понятно и доступно. Автор — репетитор-профессионал Анна Георгиевна Малкова.
Данного видеокурса достаточно для того, чтобы сдать ЕГЭ на «5».

Внимание! Тотальная распродажа! Именно сейчас вы можете получить все 5 дисков видеокурса по минимальной цене 5000 2500 рублей. Количество комплектов ограничено

Не опоздайте!
Заказать

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector