Прямолинейное движение и движение по окружности

Содержание:

Основные теоретические сведения

Импульс тела

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

В этих формулах буквой υ обозначены скорости тел до соударения, а буквой u обозначены скорости тел после соударения. Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов. Если правильно записать соответствующую теорему косинусов, то зачастую получается уравнение из которого можно найти нужную величину. Однако, иногда к правильно записанной теореме косинусов еще нужно будет добавить правильно записанный закон сохранения энергии (смотрите следующий раздел). В этом случае получится система уравнений из которых наверняка можно будет найти нужную величину.

Работайте с буквами, а не цифрами

Оформление задач, у которых проверяется решение, должно иметь результат в виде большой формулы с буквами. Возьмите за правило не подставлять числа до последнего шага.

В чём реальная польза букв?

  • Точность. Если разделить на калькуляторе 1 на 3, а потом умножить на 6, то получится не 2, а 1,999999998. В ЕГЭ часто ответы получаются красивыми, поэтому дробь с периодом может вызвать лишние сомнения и расфокусировку.
  • Возможность проверить размерность. Да-да, так просили делать в 7-м классе. 2 минуты на проверку размерности – выгодное вложение времени для увеличения вероятности правильного ответа большой задачи.
  • Экономия времени. Если ответ получился в виде дроби, то она может сократиться. Это реальная экономия времени на подсчёт численного ответа.

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Период колебаний вычисляется по формуле:

Частота колебаний:

Циклическая частота колебаний:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Циклическая частота колебаний пружинного маятника:

Период колебаний пружинного маятника:

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса:

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Действующее значение напряжения:

Мощность в цепи переменного тока:

Трансформатор

Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Волны

Длина волны может быть рассчитана по формуле:

Разность фаз колебаний двух точек волны, расстояние между которыми l:

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

УНПК МФТИ

Подготовительные курсы УНПК МФТИ уже более 27 лет готовят учеников для поступления в лучшие ВУЗы страны. По физике проводится курс онлайн-подготовки к ЕГЭ.

Преподаватели — эксперты ЕГЭ и члены жюри Всероссийских олимпиад. Они развивают глубокое понимание предмета вместо нарешивания тестов и обучают по программе с интегральным межпредметным взаимодействием.

В семестр вас ждет 20 занятий по 3 ак.ч. 1 или 2 раза в неделю. При записи на курс каждый школьник проходит распределительное тестирование.

В процессе обучения производится непрерывный сбор результатов и контроль прогресса обучения. Все эти данные доступны в личном кабинете ученику и родителю.

II часть ЕГЭ по физике

Распространенный миф: «II часть ЕГЭ по физике очень сложная, и у меня не получится к ней подготовиться». Часто мои новые ученики думают именно так, и я всегда развеиваю этот миф. 

В задачах с развернутым ответом есть приемы и алгоритмы, которые часто встречаются. Побольше практикуйтесь и запоминайте эти приемы. Задачи второй части можно и нужно решать.

Когда начать решать задачи с развернутым ответом из II части? После освоения теории. Чем раньше — тем лучше. Сначала отработайте знания на более легких заданиях. Как только научитесь применять формулы в задачах на 1 балл, сразу же переходите ко второй части.

Обычно при решении задач с развернутым ответом нужно применить от 2 до 4 формул и законов. Каждый из этих законов по отдельности использовать просто, но применить их в комбинации — это уже довольно сложная задача для учеников. 

Лайфхаки решения II части

Во второй части ЕГЭ по физике есть стандартных приемов к решению задач, которые нужно знать каждому. Если вы их поймете и запомните, то будете решать часть КИМа стабильно хорошо.

1. Закон сохранения импульса + закон сохранения энергии

В механике эти два закона часто применяются вместе. Эти законы помогают решить задачи на соударения, на слипание и на взрывы тел. Пример:

2. Закон сохранения энергии + второй закон Ньютона

Эта связка особенно часто встречается. Например, она помогает решать задачи на аттракционы трюк «мертвую петлю». Еще понадобятся знания движения по окружности. Пример:

3. Второй закон Ньютона + уравнение Менделеева-Клапейрона

Эти законы связывают механику и молекулярную физику. Они помогают решать задачи на цилиндры с поршнями. Пример:

4. Уравнение Менделеева-Клапейрона + сила Архимеда + второй закон Ньютона

С помощью этой связки решаются задачки на воздушные шарики. Пример:

5. Фотоэффект + сила Лоренца в магнитном поле + движение по окружности

Теперь вы знаете, как подготовиться к ЕГЭ по физике, опираясь на структуру экзамена! Если хотите разобраться в остальных темах по физике и не только, обратите внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ЕГЭ

Кстати, у меня на курсах MAXIMUM тоже можно поучиться!

Основные разделы физики: что они изучают

Основные группы разделов:

  • макроскопическая физика;
  • микроскопическая физика;
  • междисциплинарные отрасли знаний.

Определение

Макроскопическая физика изучает явления и законы мира, в котором размеры объектов сопоставимы с размером человеческого тела.

Ее разделы:

  1. Механика — изучает движение материальных тел и взаимодействие между ними. При этом уточняется понятие движения. Особенно выделяется классическая механика, которая имеет четко выделенные границы применимости: она не описывает движения в «микромире».
  2. Общая теория относительности — уточняет специальную теорию относительности А. Эйнштейна, учитывает кривизну пространства.
  3. Оптика — рассматривает явления, касающиеся распространения электромагнитных волн видимого, инфракрасного и ультрафиолетового диапазонов спектра; вводит понятие света и изучает его особенности; включает в себя волновую, молекулярную, нелинейную и кристаллооптику.
  4. Термодинамика — изучает наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах. Данный раздел физики уточняет понятие температуры. Термодинамика является одним из наиболее полных и изученных разделов физической науки.
  5. Физика колебаний и волн — изучает физические явления, которые отличаются циклическим изменением физических величин во времени и в пространстве; выделяет колебательные (механические, электромагнитные, электромеханические колебания) и волновые процессы (упругие и электромагнитные волны).
  6. Электродинамика — изучает электромагнитное поле и его электромагнитное воздействие. Объекты изучения — электромагнитное излучение, электрический ток и т.д., включает в себя электродинамику сплошных сред, магнитогидродинамику и электрогидродинамику.

Определение

Микроскопическая физика исследует «микромир», в котором объекты во много раз меньше человека.

Ее разделы:

  1. Атомная физика — изучает строение и свойства атомов. Она получила развитие на рубеже XIX — XX веков,  перемежается с ядерной.
  2. Квантовая физика — изучает квантово-механические и квантово-полевые системы и законы их движения. Она отличается исключительно описательным характером, включает в себя такие подразделы: квантовая механика, квантовая теория поля, квантовая статистическая физика, квантовая оптика. Квантовая физика  разрабатывалась А. Эйнштейном и многими другими исследователями.
  3. Статистическая физика — изучает системы с произвольным числом степеней свободы. Она делится на статистическую механику, статистическую теорию поля физическую кинетику и квантовую статистику. Она  оперирует такими понятиями, как фазовое пространство, статистический вес, статистическая сумма и т.д. Прогнозы носят вероятностный характер.
  4. Физика конденсированных сред — занимается исследованиями макроскопических и микроскопических свойств вещества, особенно в таких обстоятельствах, когда количество составляющих элементов (например, атомов) достаточно велико и взаимодействия между ними интенсифицируются. Подразделами этой дисциплины являются физика твердого тела, жидкостей, атомов и молекул, а также наноструктур.
  5. Ядерная физика — изучает структуру и свойства атомных ядер, а также их столкновения (ядерные реакции), оперирует такими понятиями, как атом, нейтрон, протон и др., имеет принципиальное значение для многих смежных дисциплин.

Междисциплинарные разделы (список основных отраслей):

Задания повышенного уровня сложности на 2 балла

Задания повышенной сложности оцениваются в 2 балла. Впрочем, первая часть ЕГЭ по физике проще второй, поэтому правильнее сказать, что эти задания средние по сложности. Всего в экзамене 11 задач из этой категории: 10 из первой части, 1 – из второй. В этих заданиях необходимо проанализировать ситуацию с точки зрения физика-экспериментатора.

Первая часть ЕГЭ по физике включает в себя задания трех типов:

  • Выбор 2 из 5 утверждений
  • Анализ изменения величин
  • Установление соответствия

Рассмотрим пример каждого типа заданий.

1)   Выбор 2 из 5 утверждений.

Здесь необходимо проанализировать каждый пункт с точки зрения формул и законов физики

Важно заметить: в утверждениях никогда не встретится то, что невозможно обосновать

Выбранные варианты можно записать в любом порядке, а один балл можно получить, если выбрать одно правильное и одно неправильное утверждение.

Пример задания на выбор двух утверждений

Заметим, что пункты 1, 2, 4 связаны с температурой. Поэтому, проанализировав температуры, мы убьем сразу трех зайцев.

Запишем формулу для плотности, где M – молярная масса газа. Выразим температуру и применим ее для описания каждой точки графика.

Проанализируем полученные отношения:

  • Температура 1 максимальна
  • Температура 2 минимальна
  • Температура 2 меньше температуры 1. Следовательно, в процессе 1-2 температура газа уменьшается. Первое утверждение верно.
  • Температура 3 не является максимальной. Второе утверждение неверно.
  • Отношение максимальной температуры 1 к минимальной температуре 2 равно 8. Утверждение 4 верно.

Рассмотрим утверждение 3. Из графика видим, что плотность в процессе 2-3 уменьшается. Применим формулу для массы тела:

Заметим, что масса постоянна. Так как плотность уменьшается, то объем должен увеличиваться. Утверждение 3 неверно.

Теперь проанализируем утверждение 5.

В процессе 3-1 плотность газа остается постоянной. Следовательно, объем тоже должен быть постоянным.

Работа газа зависит от увеличения или уменьшения объема. Так как объем не меняется, то работа не будет совершаться.

2) Анализ изменения величин

В этом задании описывается ситуация, затем начальные параметры меняют. Например, шарик катится с горки под действием силы тяжести, а потом массу шарика меняют. Нужно определить, как изменятся (увеличатся, уменьшатся, не изменятся) те или иные две величины.

Один балл можно получить, если вы верно определили изменение только одной величины.

Пример задания на анализ изменения величин:

Начнем со времени. Представим, что вы кидаете мячик параллельно полу с высоты колена, а потом поднимаетесь на 25 этаж своего дома и кидаете его с крыши. Будет ли он дольше лететь? Конечно, поэтому смело пишем, что время полета увеличится.

Теперь давайте разберемся с дальностью полета. Надо понимать, что эта задача – частный случай движения под углом к горизонту. Описываться эта задача будет теми же самыми уравнениями.

Важно помнить, что движение по оси OX будет постоянным. Ведь ускорение g действует только по оси OY!. Запишем уравнение для движения вдоль Ох:

Запишем уравнение для движения вдоль Ох:

Время увеличилось, скорость не изменилась. Зависимость прямо пропорциональная, поэтому путь тоже увеличится.

3) Установление соответствия

В этих заданиях необходимо установить соответствие между графиками и физическими величинами, либо между формулами и физическими величинами. Один балл можно получить при установлении одного правильного соответствия.

Пример задания на установление соответствия:

Для выполнения этого задания нужно вспомнить формулу для изменения импульса. С одной стороны, это изменение можно записать через силу и время, а с другой – через массу и изменение скорости.

Теперь вы знаете, как решать первую часть ЕГЭ по физике! Если хотите разобраться в остальных темах по физике и не только, обратите внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ЕГЭ

Кстати, у меня на курсах MAXIMUM тоже можно поучиться!

Бесплатно

ЕГЭ.рф

Сайт: https://егэ.рф

Платформа сотрудничает с ФИПИ, поэтому здесь вы можете пройти пробный ЕГЭ по физике на реальном варианте этого года. Первая часть экзаменов будет проверена сразу после сдачи — автоматически. Это бесплатно.

Платно доступна проверка от экспертов ЕГЭ — детальный разбор ошибок во второй части экзамена. Стоит 500 р. без комментариев эксперта или 1000 р. с развернутыми комментариями.

«АКАДЕМИЯ IT»

Сайт: https://academiait.ru

Бесплатный и доступный онлайн-курс «ЕГЭ по физике», в котором разбираются базовые темы. В курс входит 36 уроков. Это материалы прошлых лет, но для изучения и повторения теории вполне годится.

«4ЕГЭ»

Сайт: https://4ege.ru

Здесь вы найдете различные материалы:

  • Видео по теоретическим вопросам физики
  • Видео-разборы отдельных заданий из ЕГЭ
  • Видео-разборы типичных ошибок на ЕГЭ по физике
  • Лекции по отдельным темам
  • Шпаргалки, чек-листы, конспекты для подготовки к ЕГЭ

«Синергия»

Сайт: https://synergy.ru

Готовьтесь к выпускному экзамену по физике, не теряя времени на поиски актуальных материалов.

На сайте собрана теория для подготовки к ЕГЭ по физике. Файлы разделены по вопросам экзаменационного листа. Информация подана схематически и с графиками, важные определения выделены шрифтом. Все формулы, которые нужно знать для успешного прохождения испытания, — в отдельном файле.

В разделе с практикой — простые и сложные задания из материалов ФИПИ на 2021 учебный год с ответами и подробным разбором. Здесь же есть демоверсия 2021 года, кодификатор и спецификация. Те, кто планирует получить самый высокий балл, могут поработать и с примерами прошлогодних тестов. Они с решениями тоже есть на сайте.

«РешуЕГЭ»

Сайт: https://phys-ege.sdamgia.ru

Сайт-тренажер, где можно практиковаться в решении тестовой части и заданий с развернутым ответом. Новые варианты генерируются каждый месяц. А чтобы потренироваться в решении заданий по определенной «физической» теме, вы можете легко сформировать собственный вариант из заданий каталога.

Яндекс.Репетитор

Сайт: https://yandex.ru

На сайт загружено 14 видео по теории физики и решению задач в формате ЕГЭ. Также здесь собраны варианты заданий, которые очень похожи на те, что используются на ЕГЭ. Их составляют эксперты, в том числе авторы «СтатГрада». Каталог заданий обновляется каждую неделю.

«Физика ЕГЭ и ОГЭ — Владислав Карибьянц»

Сайт: https://www.youtube.com

В плейлисте «Физика ЕГЭ 2021» вы найдете 48+ видео с разбором типовых задач по отдельным темам ЕГЭ, демоверсий и прочих тренировочных вариантов. Канал ведет репетитор с 29+ летним стажем, кандидат физ-мат наук.

Timetostudy Сourses

Сайт: https://www.youtube.com

В плейлисте собрано 18 видеоуроков по физике, которые охватывают все темы школьной программы за 7-11 класс. Они будут особенно полезны тем, кто готовится к ЕГЭ. Это материалы прошлых лет, но разобраться в теории помогут и сейчас.

Основные направления, формулы и пояснения

В механике выделяют следующие основные разделы:

  • кинематику (науку, которая описывает количественные характеристики движения: время, расстояние, скорость);
  • статику (науку о телах, находящихся в равновесии при воздействии на них внешних сил);
  • динамику (науку о движении тел при воздействии на них внешних сил).

Механика изучает движения материальных тел, при этом все материальные объекты делятся на 3 вида:

  1. Материальная точка (это материальное тело, чьи размеры можно не учитывать). 
  2. Твердое тело (тело, в котором расстояние между любыми его точками неизменно).
  3. Сплошная среда (газ, жидкость и другие вещества, подверженные деформации).

По предмету изучения механику подразделяют на:

  • теоретическую (наука об общих законах движения, которая изучает и описывает движение материальных точек и твердых тел);
  • механику сплошных сред (наука, которая изучает движение тел, непрерывно заполняющих пространство и представляющих собой сплошную среду);
  • прикладную (наука, которая описывает принцип работы технических механизмов).

Рассмотрим детальнее основные разделы механики. И начнем с кинематики.

Подготовка к ЕГЭ по физике

В качестве дополнительного предмета для сдачи ЕГЭ многие ученики выбирают физику. Знание физики необходимо будущим ученым и инженерам, конструкторам и технологам. Мы предлагаем пройти тренировочный ЕГЭ по физике совершенно бесплатно, выполнив ряд тестов по основным темам школьной программы.

Наш интерактивный тренажер основан на интеллектуальной платформе Skils4u, которая позволяет довести до автоматизма ряд важных учебных навыков. С ним самостоятельная подготовка к ЕГЭ по физике будет эффективной и не займет много времени. Для выполнения одного теста требуется от 20 до 40 минут. Их можно делать все подряд или выбрать именно ту тему, которая вызывает наибольшие затруднения.

По итогам прохождения теста формируется рейтинг ученика, который может измениться после повторных тренировок. Все задания ЕГЭ по физике даны в удобной форме. Вам не потребуется писать, достаточно будет выбрать верный ответ на экране. Уникальность программы заключается в том, что она адаптируется к уровню подготовки конкретного ученика и генерирует задачи ЕГЭ по физике по возрастанию сложности.

Регулярно тренируясь, вы все меньше времени будете тратить на решение ЕГЭ по физике, привыкая к формату опроса. Формируется устойчивый учебный навык, позволяющий легко ориентироваться в сложных формулах, запоминать основные законы. При этом вы будете видеть задачи ЕГЭ по физике с ответами, чтобы исключить ошибки и сразу найти нужную информацию. Если вы ошибетесь один раз, в следующем задании будет принято верное решение.

Для получения устойчивого навыка мы рекомендуем тренироваться ежедневно. Только в этом случае дополнительная подготовка к ЕГЭ по физике будет эффективной. Рекомендуем оформить доступ к образовательной платформе Skills4u на 1 месяц, полгода или целый учебный год. Решение принимается после входного тестирования с учетом рекомендаций, предоставляемых системой. Разумеется, полная подготовка к ЕГЭ (физика) невозможна без посещения школьных занятий, но в условиях вынужденного карантина или при домашнем обучении тренажер станет незаменимым дополнением к основному курсу и позволит быстро подтянуть успеваемость и привыкнуть к правильному распределению времени на экзамене.

На образовательной платформе Skills4u проводится эффективная самостоятельная подготовка к ЕГЭ по физике по заданиям, адаптированным к уровню знаний конкретного ученика. Мы рекомендуем всем выпускникам, которые будут сдавать этот предмет, воспользоваться возможностями, которые предоставляют современные технологии. С интеллектуальным тренажером вы легко выучите все формулы и научитесь решать самые сложные задачи.

Оптика

Прохождение границы двух сред:

Закон отражения: `alpha=gamma`
Показатель преломления: `n=c/v`
Закон преломления: `sinalpha/sinbeta=n_2/n_1`
  `nu_1=nu_2`
  `n_1lambda_1=n_2lambda_2`

Линзы:

Оптическая сила линзы: `D=1/F` где F — фокусное расстояние
Формула тонкой линзы: `1/F=1/d+1/f` где d — расстояние от линзы до предмета, f — от линзы до изображения
Каждое слагаемое может входить в формулу со знаком плюс или минус:`+1/F` для собирающей линзы`-1/F` для рассеивающей линзы
`+1/d` для действительного предмета`-1/d` для мнимого предмета (построенного другой оптической системой)`+1/f` для действительного изображения`-1/f` для мнимого изображения
Линейное увеличение: `Г=h/H=f/d` где H — высота предмета, h — высота изображения

Волновая оптика:

Условие максимумов интерференции: `Deltad=klambda,   kinZZ`
Условие минимумов интерференции: `Deltad=(2k+1)lambda/2,   kinZZ`
Формула дифракционной решётки: `dsinvarphi=klambda,   kinZZ`

Все формулы за 7 класс

Учебники физики за 7 класс знакомят школьников с формулами, при помощи которых вычисляют:

  • скорость равномерного движения;
  • среднюю скорость неравномерного движения; 
  • плотность вещества;
  • силу тяжести; 
  • равнодействующую сил, направленных в одну сторону;
  • вес тела; 
  • давление; 
  • давление жидкости; 
  • силу Архимеда. 

Скорость равномерного движения

Скорость равномерного прямолинейного движения — это постоянная скорость объекта при движении по прямой линии, которая будет одинакова в любой момент движения.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Рассчитывается она так:

\(V=\frac St\)

где \(V\) — искомая нами скорость объекта, \(S\) — путь, пройденный объектом, \(t\) — время, за которое был пройден путь.

Скорость измеряется в км/ч, когда речь идет о больших расстояниях, и м/с, когда о маленьких.

Средняя скорость неравномерного движения

Средняя скорость — это скорость, которую мог бы иметь объект, если бы преодолел этот же самый путь за это же самое время, но двигаясь равномерно.

Зависит от тех же параметров, что и скорость при равномерном движении: от \(S\) и \(t\). Чтобы рассчитать среднюю скорость движения нужно полный путь, пройденный объектом, разделить на все время движения:

\(V=\frac{S_1+S_2}{t_1+t_2}\)

где \(V\) — средняя скорость, \(S_1, S_2\) — участки пути, из которых состоит полный путь объекта, \(t_1\) — время, потраченное на преодоление первого участка пути, \(t_2\) — время, потраченное на преодоление второго участка пути.

Средняя скорость также измеряется в км/ч.

Плотность вещества

Плотность вещества — это физическая величина, которая показывает зависимость массы вещества от его объема.

Формула для определения плотности вещества:

\(p=\frac mV\)

где \(p\) — плотность, \(m\) — масса вещества, \(V\) — его объем.

Измеряется плотность в \(кг/м^3\).

Сила тяжести

Сила тяжести — эта та сила, с которой все объекты притягиваются к поверхности нашей планеты.

Определяется по формуле:

\(F=g\times m\)

где \(F\) — сила тяжести, \(m\) — масса объекта, а \(g\) — коэффициент силы тяжести, равный 9,8 м/с.

Измеряется сила тяжести в ньютонах.

Равнодействующая сил, направленных в одну сторону

Равнодействующая сила — это сила, которая воздействует на тело так же, как несколько других одновременно воздействующих на объект сил.

Если силы, воздействующие на объект, направлены по одной прямой и в одну сторону, равнодействующая этих сил будет направлена в эту же сторону, а ее модуль будет равен сумме модулей этих сил.

Исходя из трактовки этого понятия, следует, что:

\(R=F_1+F_2\)

где \(R\) — равнодействующая сил \( F_1\) и \(F_2\), действующих на тело.

Измеряется в ньютонах.

Вес тела

Вес — это сила, с которой объект воздействует на опору или подвес под ним вследствие притяжения к планете Земля.

Вес тела численно равен силе тяжести и вычисляется по той же самой формуле:

\(F=g\times m\)

Так же, как и сила тяжести, измеряется в ньютонах.

Давление

Давление — это физическая величина, характеризующая степень воздействия силы, действующей перпендикулярно поверхности на площадь этой поверхности.

\(P=\frac FS\)

где \(P\) — давление, \(F\) — сила, направленная перпендикулярно площади поверхности, \(S\) — площадь поверхности, на которую действует сила.

Давление измеряется в паскалях.

Давление жидкости

Давление в жидкости или газе зависит:

  1. От уровня жидкости или газа в емкости. Это происходит из-за того, что верхние слои «давят» на нижние слои жидкости.
  2. От плотности жидкости / газа. Чем больше плотность, тем больше давление.

В виде формулы эту зависимость записывают так:

\(P=p\times g\times h\)

где \(P\) — давление в жидкости, \(p\) — плотность жидкости, \(g\) — коэффициент силы тяжести, равный 9,8 м/с, \(h\) — высота (уровень) жидкости в емкости. 

Давление в жидкости измеряется в паскалях.

Согласно закону Паскаля, давление в жидкости и газах передается одинаково по всем направлениям.

Сила Архимеда

Архимедова сила — сила выталкивания, действующая на тело, которое погружено в жидкость или газ.

Эта сила всегда направлена вверх и равна по модулю весу жидкости, вытесненной телом. В уравнении зависимость выглядит так:

\(F_a=p\times g\times V\)

где \(F_a\) — сила Архимеда, \(p\) — плотность жидкости или газа, \(g\) — коэффициент силы тяжести, \(V\) — объем погруженного в жидкость объекта.

Сила Архимеда измеряется в ньютонах.  

Подготовка к экзамену по физике: время и место

Порядок действий во многом зависит от времени начала. Готовиться к ЕГЭ надо с первых месяцев учебного года, но это в идеале. Рассмотрим альтернативные варианты.

  • Если приступать за 6 месяцев до экзамена, следует делать ударение на четкой систематизации занятий и решении задач. Заниматься дома придется до 5 дней в неделю. Первые 3−4 месяца больше налегайте на теоретическую часть: понимая физический смысл изучаемых явлений, на практике останется лишь набить руку.
  • Если до ЕГЭ осталось 1−2 месяца, нужен репетитор или факультативные занятия с учителем. Нормально повторить уже, скорее, всего не получится. Придется налегать на темы, указанные в спецификациях, конфигураторах, демонстрационных вариантах тестов этого года. Гарантий успешной сдачи это не даст, но шансы повысит.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector